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Abstract

Statistical analysis of information sources is usually based on their independent stochas-
tic outputs (signals, images). Statistical model of an information source is a hypothetical
probability distribution on a given measurable space. True distribution of the outputs is gener-
ally unknown. Usually are available digitalized (appropriately quantized or classi�ed) outputs
which can be represented by empirical probability distribution. We consider statistical deci-
sions about the models consisting in testing hypotheses about the probability distributions.

Decision criteria: General divergence statistics (f -divergences of hypothetical and empirical
distributions) including all power divergence statistics such as the classical Pearson statistics
or the Neyman , the likelihood ratio and the Freeman-Tukey statistics.

Solved problems: Limit laws (asymptotic distributions) for the divergence statistics leading
to the critical values for the asymptotically �-sized tests based on these statistics (i.e. to the
tests with guaranteed decision errors of the �rst kind) and comparison of powers (decision errors
of the second kind) of the tests based on various divergence statistics.

The �rst part of this paper deals with limit laws under hypotheses and local alternatives.
New extension of the classical Morris (1975) limit law concerning the Pearson statistics to all
divergence statistics. Innovative potential of the extension is demonstrated by a comparison
with the classical result concerning the important likelihood ratio statistic. The second part
of the paper deals with e¢ ciencies of the above considered decisions, i.e. with the powers of
the tests based on various divergence statistics. It applies both the Pitman and the Bahadur
approaches to the relative e¢ ciency of statistics. All divergence statistics are shown to be
equally e¢ cient in the Pitman sense. However, some new results are presented demonstrating
the maximal Bahadur e¢ ciency of the likelihood ratio statistic in the important class of all
power divergence statistics.

1. STATISTICAL MODEL

We consider a statistical model ( 
; S; P ) with known measurable observation space ( 
;
S) and unknown probability distribution P producing i.i.d. realizations Y1; : : : ; Yn: Available
are only the digitalized (appropriately quantized) data

Xj =

nX
i=1

1fAjg(Yi); 1 � j � k
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for a given partition
A = f A1; : : : ; Akg � S

of 
: We admit that the partition A, the partition sets Aj and the partition sizes k depend
on the sample size n, i.e.

A = An; Aj = Aj;n; k = kn: (1)

In this paper we study testing the hypothesis H that the stochastic outputs Yi of the
model are generated by a given distribution P0 against the alternative A represented by the
true distribution of these outputs. The testing is assumed to be carried out by means of the
available data

X = (X1; : : : ; Xk): (2)

This means that, in fact, we study the problem of testing

H � p = p0 against A � p (true)

where
p0 = (p0j � P 0(Aj) : 1 � j � k) (3)

is a discrete hypothetical distribution and

p = (pj � P (Aj) : 1 � j � k) (4)

a discrete true distribution, and that the testing is carried out by means of the data (2) uniquely
represented by the discrete empirical distribution

p̂ = (p̂1 � X1=n; : : : p̂k � Xk=n): (5)

In view of (1) this means that

Xj = Xj;n; p
0
j = p

0
j;n; pj = pj;n and p̂j = p̂j;n (6)

in (2) - (5).

We study various methods of the testing and preferences between them in the situation
where the sample size n increases above all bounds. In this context we respect throughout this
paper the following conventions and assumptions.

Conventions. (i) The subscripts n considered in (1) and (6) are suppressed and (ii)
the standard deterministic and stochastic convergences �!, p�! and d�! as well as the
standard asymptotic expressions of the type o(1) or O(1); are considered for n!1.
Assumptions. It holds k !1; and for some � � 1 also k�+1=n = o(1) and

minn k� p0min � const > 0 (7)

where p0min = minfp0j : 1 � j � kg:
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2. DIVERGENCE STATISTICS

Let us denote by F the class of all functions f(t) twice di¤erentiable with f"(t) > 0 in the
domain t 2 (0;1) which are Lipschitz around t = 1 and standardized in the sense f(1) = 0:
By f(0) 2 (�1;1] we denote the extension for t # 0. This paper studies the following class of
statistics.

De�nition 1. The divergence statistics are de�ned by the formula

Df;n =
2nDf (p̂; p

0)

f"(1)
; f 2 F (8)

where

Df (p̂; p
0) =

kX
j=1

p0j f

�
p̂j
p0j

�
(9)

is the f -divergence of distributions p̂; p0:

Notice that by (7) it holds p0j > 0 in (9). For the properties of the f -divergence (9) see e.g.
Liese and Vajda (2006). Next follow some well known examples of the divergence statistics (8).

Example 1 (classical Pearson statistic). The quadratic function f (t) = (t � 1)2 leads to
the Pearson divergence �2(p̂; p0) and the classical Pearson statistic

�2n = n�
2(p̂; p0) = n

kX
j=1

(p̂j � p0j)
2

p0j
=

kX
j=1

(Xj � np0j )
2

np0j
:

Example 2 (likelihood ratio statistic). The logarithmic function f(t) = t ln t leads to the
information divergence I(p̂; p0) and the likelihood ratio statistic

In = 2nI(p̂; p0) = 2n
kX
j=1

p̂j ln
p̂j
p0j
= 2

kX
j=1

Xj ln
Xj

np0j
: (10)

Example 3 (power divergence statistics). The class of power functions

f�(t) =
t� � �(t� 1)� 1

�(�� 1) where � 2 R; �(�� 1) 6= 0

with the limits
f0(t) = � ln t+ t� 1 and f1(t) = t ln t� t+ 1

de�ne power divergences D�(p̂; p
0) � Df�(p̂; p

0) for � 2 R and the corresponding power
divergence statistics D�;n � Df�;n: It is easy to verify that �2(p̂; p0) � D2(p̂; p

0) and I(p̂;
p0) � D1(p̂; p

0) so that also �2n � D2;n and In � D1;n:
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3. LIMIT LAWS

Let throughout this section the conditions and assumptions introduced in Section 1 hold.
Then for all f 2 F

Df;n � kp
2k

d�! N(0; 1) under H (11)

according to Györ� and Vajda (2002).This is extends the classical limit law

�2n � kp
2k

d�! N(0; 1) under H (12)

of Morris (1975) valid with the present assumption k1+�=n = o(1) replaced by the weaker
k=n = o(1): It is natural to ask whether a universal asymptotically normal law similar to
(11) remains valid also when the hypothetical equality H : p = p0 is replaced by the alternative
A � p local in the sense that p is close to p0. The answer is yes provided that p tends su¢ ciently
fast to p0 in terms of their mutual Pearson divergence �2(p̂; p0). Before going into details note
that a partial variant of this answer for the simple but important uniform hypotheses

p0 = (p0j � 1=k : 1 � j � k): (13)

was obtained previously in Vajda (2003). Here the hypotheses are restricted only by the con-
dition (6).

De�nition 2. The alternative A � p is said to be weakly local if

�2(p; p0) = O

 p
k

n

!
and local if there exists � � 0 such that

n�2(p; p0)p
k

�! �: (14)

Example 4 The classical statistical local alternative is of the form

p =

�
1� 1p

n

�
p0 +

1p
n
q

for some q = (qj � Q(Aj) : 1 � j � k) (see (4)). Since �2(p; p0) = �2(q; p0)=n, this alternative
is weakly local if �2(q; p0)=

p
k is bounded and local in the present sense if �2(q; p0)=

p
k is

convergent.

Under the assumptions considered in this paper (11) can be extended into the following
Universal Asymptotic Normality theorem.

Theorem 1 (UAN). All f -divergence statistics Df; n satisfy the limit law

Df;n � k �
p
k�p

2k

d�! N(0; 1) under local A: (15)

4



Proof of this theorem is based on the following Extension lemma

Lemma 1. If for some �n 2 R and �n > 0

�2n � �n
�n

d�! N(0; 1) under weakly local A

then for all divergence statistics Df;n

Df;n � �n
�n

d�! N(0; 1) under weakly local A:

Proof. Let A be weakly local. It su¢ ces to prove for all su¢ ciently small " > 0

Pr

�
jDf; n � �2njp

k
> "

���� A� = o(1): (16)

By inequalities in Györ� and Vajda (2002), for all su¢ ciently small " > 0 there exist constants
c(") > 0 such that for all n

Pr

�
jDf; n � �2njp

k
> "

���� A� � c(")�nAnp
k

+ Bn

�
where

An =
kX
j=1

E jp̂j � pjj3
(pj)2

and

Bn =
kX
j=1

E jp̂j � pjj3
(pj)2

:

Using the fact that under A

np̂ �X �Mn(p; k) (see (2))

and employing the properties of the multinomial lawMn(p; k); one obtains from here the desired
asymptotic (16).

Proof of Theorem 1. After some e¤ort it is possible to verify that under the assumptions
of this paper Theorem 5.1 of Morris (1975) implies

�2n � k �
p
k�p

2k

d�! N(0; 1) under local A:

The desired result follows by applying this in the Lemma 1.

Example 5 (likelihood ratio statistic). By our UAN theorem

2In � k �
p
k�p

2k

d�! N(0; 1):
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This particular limit law was proved directly in Theorem 5.2 of Morris (1975) under weaker
but

(i) less intuitive and much more complicated assumptions

(ii) and the proof was incomparably more complicated.

Our theorem is not only simpler than the mentioned Theorem 5.2, but also universal, e.g.
applicable to all statistics D�;n: Among the well known examples di¤erent from D1;n = In and
D2;n = �2n one can mention the Freeman-Tukey statistic

D1=2;n = nH2(p̂; p0) = 4n
kX
j=1

�p
p̂j �

q
p0j

�2
or the Neyman statistic D�1;n and the reversed likelihood ratio statistic D0;n.

4. ASYMPTOTIC RELATIVE EFFICIENCIES

In this section we consider the hypotheses H and alternatives A introduced in Section 1
and the tests of these hypotheses based on the divergence statistics Df;n introduced in Section
2 for various functions f 2 F . We compare asymptotic e¢ ciencies of the tests rejecting H
when Df;n exceeds certain critical value cn for various f1; f2 2 F under local alternative A.
The asymptotic e¢ ciencies refer to the powers �f;n(s) = Pr (Df;n < cnj A) of these tests with
critical values cn satisfying the asymptotic size condition s = limPr (Df;n > cnj H) and to the
sizes sf;n(�) = Pr (Df;n > ~cnj H) of the corresponding tests with critical values ~cn satisfying
the asymptotic power condition � = limPr (Df;n < ~cnj A). Similarly as before, we respect in
this section the conditions and assumptions introduced in Section 1. Next follow two classical
approaches to the de�nition of the asymptotic relative e¢ ciency E(Df1;n; Df2;n) depending on
parameters 0 < s; � < 1 (see Quine and Robinson (1985).

De�nition 3. The Pitman asymptotic relative e¢ ciency PEs(Df1;n; Df2;n) is the limit (if
it exists) of the ratio �f1;n(s)=�f2;n(s) of powers of the corresponding divergence tests of equal
asymptotic size s: The Bahadur asymptotic relative e¢ ciency BE�(Df1;n; Df2;n) is the limit (if
it exists) of the ratio sf1;n(�)=sf2;n(�) of the sizes of the corresponding divergence tests of equal
asymptotic power �.

Theorem 2. If the alternative A is local in the sense of De�nition 2 then for all f1; f2 and
s; � under consideration PEs(Df1;n; Df2;n) = BE�(Df1;n; Df2;n) = 1.
Proof. Let � be the distribution function of the normal random variable N(0; 1); ��1 the

corresponding quantile function and put for every and � > 0

cn(s) = k +
p
2k��1(1� s); ~cn(�) = k +

p
k�+

p
2k��1(�)

By the limit laws (11) and (15), the critical values cn = cn(s) and ~cn = ~cn(�) satisfy for all
0 < s; � < 1 and f 2 F the above considered asymptotic size and power conditions and,
moreover,

sf;n(�) = Pr

�
�kp
2k
>
�p
2
+ ��1(�)

���� H� �! �

�
�p
2
+ ��1(�)

�
for all f 2 F
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and

�f;n(s) = Pr

 
Df;n � k �

p
k�p

2k
< ��1(1� s)� �p

2

����� A
!
�! �

�
��1(�)� �p

2

�
for all f 2 F :

The desired result is clear from here.

Obvious reason why De�nition 3 fails is the too small (asymptotically vanishing) deviation
�2(p; p0) �! 0 of the local alternative A � p from H � p0 required in De�nition 2 and leading
to the same asymptotically vanishing deviation Df (p; p

0) �! 0 in terms of all f -divergences as
it is visible from (15). Thus, following Bahadur (1981), in the rest of this section we consider
the alternatives A � p satisfying the large deviation condition

Df (p; p
0) �! �f > 0 for f 2 ff1; f2g � F : (17)

In accordance with Quine and Robinson (1985) we suppose that the statistics Df;n are for
every f 2 ff1; f2g consistent in the sense

Df;n
n

p�!
�

0 under H
�f under A

: (18)

This means that the asymptotic power condition � = limPr (Df;n < ~cnj A) holds for the
critical values of the form ~cn = n�f + o(n) so that the test sizes sf;n(�) considered in the
de�nition of the Bahadur e¢ ciency above are of the form sf;n(�) = Pr (Df;n > n�f + o(n)j H)
� Pr (Df;n > n�f j H) : Thus the new concept of relative e¢ ciency in the next de�nition follows
the above stated Bahadur approach, just the small deviation condition Df (p; p

0) �! 0 on the
alternative is replaced by the large deviation condition (17).

De�nition 3. Let for every f 2 ff1; f2g the test statistic Df;n be consistent in the sense
of (18) and let there exist a sequence an(f) �! 1 and a continuous function gf : (0;1) such
that for all � > 0

Pr (Df;n > n�j H) = exp f�an(f) [gf (�) + o(1)]g � exp f�an(f)gf (�)g : (19)

Then the limit

BE(Df1;n;Df2;n) = lim
an(f1) gf1(�f1)

an(f2) gf2(�f2)
(20)

(if it exists) is called the Bahadur asymptotic relative e¢ ciency of Df1;n with respect to Df2;n.

Throughout the past decades this concept of e¢ ciency was applied to the tests based on
various power divergence statistics Df�;n � D�;n; � 2 R. The �rst known result of this kind is
BE(In; �2n) � BE(D1;n;D2;n) =1 obtained by Quine and Robinson (1985). Results concerning
the Bahadur functions gf�(�) for some power divergence statistics Df�;n can be found in Györ�
et al. (2000), Beirlant et al. (2001), and Harremoës and Vajda (2008a). Recently Harremoës
and Vajda (2008b) proved the following result.
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Theorem 3. If k1+� lnn=n �! 0 holds instead of k1+�=n �! 0 assumed in Section 1 then
the Bahadur e¢ ciency BE(D�1;n;D�2;n) exists for all 0 < �1 < �2 and is given by the formula

BE(D�1;n;D�2;n) =

8<:
g�1(��1)=g�2(��2) if 0 < �2 � 1

1 if �2 > 1

where

g�(�) =

8<: ln(1 + �(�� 1)�)=(�� 1) if 0 < � < 1

lim�"1 g�(�) = � if � = 1

and g1(�) = are the functions corresponding in the sense of (19) to the statistics D�;n.

We see that the Bahadur e¢ ciency is decreasing in the variable � 2 [1;1); and for small
��1 ;��2 it is increasing in � 2 (0; 1]: This rigorously demonstrates the supremacy of the
likelihood ratio statistic In = D1;n over all divergence statistics D�;n with positive powers �:
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